

Code No: 52101/MT M.Tech. I-Semester Regular Examinations, March-2008.

MACHINE MODELLING & ANALYSIS (Common to Power Electronics & Electric Drives, Power & Industrial Drives, Power Electronics)

Time: 3 hours

Max. Marks: 60

Answer any FIVE questions All questions carry equal marks.

- 1.a) What is generalized machine theory? What are the restrictions of generalized machine theory?
 - b) At what conditions the basic G.M.Theory can be applied?
 - c) Write the voltage equations for Kron's primitive machine in matrix form. What observations are made from the impedance matrix of this machine?
- 2.a) Obtain mathematical modeling in matrix form for a given separately excited d.c.motor.
 - b) Obtain the transfer function of a d.c. separately excited motor. Neglect only frictional torque and also write the formulae for undamped natural angular frequency and damping factor.
- 3.a) The parameters of a 5 h.p d.c. shunt motor are $r_a = 0.6\Omega$, $L_{AA} = 0.012H$, $R_f = 120\Omega$; $L_{FF} = 120H$; $L_{AF} = 1.8H$ and $V_a = V_f = 240V$. Calculate the steady state rotor speed ω_r for It=0.
 - b) Develop machine model for a d.c. compound motor, with the help of neat schematic diagram and primitive diagram. Arrange the final equations in state space form.
- 4.a) What do you understand by the term 'Linear Transformation' as used in electrical machines?
 - b) Explain the term "invariance of power" as applied to electrical machines.
 - c) Explain phase transformation and Active transformation used in a.c. machines.
- 5.a) Draw the basic circuit model for a 3-phase induction motor for stator as well as rotor and obtain voltage equations in the form of matrices interms of stator and rotor currents.
 - b) Derive and obtain expressions for flux linkages in the two axis model for a 3-phase induction motor from ψ_a, ψ_b, ψ_c values.

- 6.a) Obtain the expressions for a 3-phase induction motor (Voltage and current) in state variable form in
 - i) stator reference frame and
 - ii) synchronously rotating frame.
 - b) Obtain the torque equation of 3-phase induction motor from mathematical modeling of motor.
- 7.a) Derive expressions for armature to field mutual inductances and armature self inductances for a salient-pole synchronous machine. How are these inductance expressions modified for a cylindrical rotor synchronous machine?
- b) A 3-phase, 50Hz cylindrical rotor synchronous machine has the following parameters:
 Self inductance for phase 'a' = 3.15 mH.
 Armature leakage inductance = 0.35 mH.
 For this machine, calculate the mutual inductance between armature phases and its synchronous reactance.
- 8. Obtain the expressions for a poly phase synchronous motor (voltage and current) in state variable form in i) stator reference frame and ii) rotor reference frame.

###